
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP013246
TITLE: Surface and Edge Energy of Electron Gas in Nanocrystals

DISTRIBUTION: Approved for public release, distribution unlimited
Availability: Hard copy only.

This paper is part of the following report:

TITLE: Nanostructures: Physics and Technology International Symposium
[9th], St. Petersburg, Russia, June 18-22, 2001 Proceedings

To order the complete compilation report, use: ADA408025

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

-he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP013147 thru ADP013308

UNCLASSIFIED



9th Int. Symp. "Nanostructures: Physics and Technology" GPLDS.02p
St Petersburg, Russia, June 18-22, 2001
(0 2001 loffe Institute

Surface and edge energy of electron gas in nanocrystals.

M. V Entin and M. M. Mahmoodian

Institute of Semiconductor Physics, Siberian Branch of the RAS,
630090 Novosibirsk, Russia

Abstract. The energy of a many-electrons nanoparticle depends on its form via the surface and
edge contributions to the thermodynamic functions. The surface energy of free electron gas is
found for a semiconductor with the Dirac spectrum. The edge energy of electron gas is calculated
for quadratic energy spectrum of electrons without and with anisotropy. We find also spin-orbit
corrections to the surface energy, which behave like the inverse square of crystal size.

Quantum dots with the large number of electrons are intermediate objects between the
quantum and the classical limits. On the one hand, their sizes are large compared with the
electron wavelength. On the other hand, the transport and thermodynamic properties of
the system are affected by the quantization of the electron states.

In the degenerated electron system the surface contribution to the thermodynamics of
small particles is determined by the small ratio of the Fermi wavelength of the electron
1/kF to the particle size L. The presence of the surface leads to the regular corrections in
powers of this parameter to the chemical potential of electrons [1].

The surface contributions to the energy of the electron gas lead to the different physical
effects. In particular, they affect the surface tension in small particles and, consequently,
their equilibrium form. Establishment of the equilibrium between the electron gas in
microparticles with different size or form is accompanied by their spontaneous charging [1].
As was shown in [2], owing to charge discreteness, the chemical potentials in microparticles
are not completely equalized. As a result, the system of metal granules becomes a gapless
insulator (the gapless Hubbard insulator).

Aside from the surface contribution to the energy, in facetted nanocrystals there are
contributions caused by their edges and vertexes [3]. The goal of the present report is the
study of surface and edge energies of three- and two-dimensional facetted nanocrystals.

Edge contribution to the energy in the free electron model

Here we consider two or three-dimensional gas of free electrons, bounded by an angle

0 < ýp < 0, r = Ix2 + y2 < R (the dihedral angle in 3D case). The electron wave
function ip satisfies the condition ip = 0 on the angle borders. We search the corrections
to the Q potential at zero temperature, caused by presence of the edge and the boundary.
The contribution to the Q potential from the vicinity r < ro of the edge r = 0 is

Lz ro

Q =-fdz frdr] d& )7 (p~i - e.,.n - k /2 1 )Lrn,) i,.(z, r, (1) 1

0 0 0

Here 8 ne, is the energy level of the electron with the main n and the magnetic m quantum
numbers, kz is the momentum along the edge, me is the electron effective mass, /t =
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k2/2me is the chemical potential. The axis z is directed along the edge and L, is the edge
length. In 2D case this variable and corresponding integration should be excluded.

When the radius R of the sector goes to infinity, Q ceases to depend on the sector size.
In the limit kFro >> 1 Q yields an asymptotic expansion (3D case):

Q = wo3Lzer2/2 + wo2Lzro + wolL, + o(1). (2)

The wave function, satisfying boundary conditions is

-2,T k 7rcm3

On,m (z, r,( p) = _ exp(ikzz)JI(kr) sin(vpo), V =(3)
FO R

Using the wave function (3) we find

kF

2 I dku 4  xdx[lnx + -I X2)] J2 (UX. (4)
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Here u = (k i. z 1/2

The expansion of (4) in the orders of ro at ro -- oc gives 0)3, 0W2 and wo. The term
oW3 = --kSF/157r2 me is the usual Q potential of 3D gas. The term 0)2 = k4,/327rme
represents the surface contribution [1,2].

The edge contribution WoI yields

36j F _ - _(5)36r~me\(0 7r

Physically the dependence of wo (4) is explained by the same factors as the positive sign
of the surface contribution to the energy. Zero boundary conditions on the crystal surface
deplete the electron gas density in the boundary region. As a result, the size of occupied
region decreases that raises the energy of electron gas at the unchangeable number of
electrons. The volume of the depletion region grows with the angle that leads to the same
change of the energy of electron gas if both crystal volume and surface area don't vary.
The change of o), (0) sign at 0 = 7r is caused by extracting of the surface part of energy.

Two cases are of special interest. They are the right angle, typical for the facetting of a
cubic crystal and the angle 0 = 27r, corresponding to the rift in the crystal. In these cases
0w] (7r/2) = -k3,/247rme and wl (27r) = k3 /247rme.

By means of (5) the number of electrons in nanocrystal of volume V, the surface area
S and edges with angles On and lengths Ln is expressed through the chemical potential:

aQ (2mel) 2 V meltS (2melt)2-
N -- I + 1 7 -' (6)

a p 37r2 47r 127r n On 7

The analogous formula is found for the edge energy of a 2D quantum dot with a polyg-
onal border. The angle energy of 2D gas is

S(¢) -- 24 M e -r (7)
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Anisotropic electron energy spectrum

The expression for the edge contribution to the energy allows generalization to the case of the
anisotropic quadratic-law energy spectrum 8(k) - 1 ki/2mi. The affine transformation
X= xi(rni/rn) 1/ 2, where me = (MlM2M 3) 1/3, converts the Schr6dinger equation to
isotropic one, for which the previous consideration is valid.

If we establish the dihedral angle by means ofthe normal vectors ni and n2 to the forming
planes, the transformed angle between these planes, entering into previous formulas, is
defined by the relation:

3 3 3- -21

cos N, lhifl2- i-[n~ i n i] (8)
i=1 i 1 rrnt i ]J

and the edge length Ln = L/2 is changed on [ mi L2 1 /2

Dirac model

The Dirac model is the simplest Hamiltonian, describing the energy spectrum of a semicon-
ductor. The most adequately it corresponds to a cubic semiconductor with a non-degenerate
central main minimum of the conductivity band and maximum of the valence band. The
standard Lattinger model with degenerate maximum of the valence band turns into the
Dirac model, if an anisotropy of the band, heavy holes and spin-orbitally splitted band are
overlooked. In comparison with the quadratic-law spectrum the Dirac model allows to take
into account non-parabolicity of the electron energy spectrum.

The Dirac equation for the spinor component u and v has the form

(8 - mec2 )u - c(kcr)v = 0, (8 + mec2)v - c(kcx)u = 0. (9)

Here 8 is the energy of the electron, counted out from the center of the forbidden band with
the width Eg = 2 mec 2, a is the Pauli spin matrix.

Each of the spinor component satisfy the Klein-Gordon equation

(82 - (MaeC2)2)u - c 2 k 2 u = 0. (10)

The equation (10) transforms into the Schr6dinger equation after substitution (82 -

(Mrec 2)2) --> 2mec 2E. If we suppose zero boundary conditions for the large components
of the wave function u = 0, the agreement with the Schr6dinger equation becomes full.
Hence, the previous formulae prove correct if we change it = k2 /2me -> it + referring
p to the conduction band bottom.

Spin-orbit induced surface corrections

The spin-orbit interaction is relativistic and usually small effect. Nevertheless, spin-orbit
interaction is known [4-5] to be amplified due to confinement by quantum wells. If the
width of a well tends to infinity, while the Fermi energy keeps constant, the corrections to
the electron spectrum go down inversely as the size. This give rise a new mechanism of
the surface corrections to the thermodynamic functions.
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Let us consider a planar sample with the width L and the normal z. The spin-orbital
correction to the Hamiltonian yields

k2 1HSO = -L -(orky - cy k ,) x. 2 2' ( 1
M ,L rec

where X is some constant of order of unit, depending on the specific surfaces. If the surfaces
are equivalent X vanishes, but in the general case X is finite.

k2
The Hamiltonian (11) has the energy spectrum E(k) = k2/2m ± e -• .k + k2y

Substituting this spectrum to Q potential we find the correction to the number of electrons
in the crystal ANso = V)X2L- 2k5/57r 2 . The found correction has, evidently, surface
origin. So the order of such correction will be the same in a nanocrystal of any shape with
the characteristic size L. This correction turns out to be weaker than the surface correction,
proportional to L-1, but may be comparable with the edge corrections.

The numerical calculations of the energy states in many-electron quantum dots are
complicated enough problem because ofthe exponential increasing ofthe number ofenergy
states, included in the Hamiltonian matrix, with the growing number of electrons. At the
same time the considered approach, based on the expanding of thermodynamic quantities
in powers of size, allows to get simple estimations without complex calculations.
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